
Solving Combinatorial Problems with Parallel

Cooperative Solvers

Lei Duan, Samuel Gabrielsson, and J. Christopher Beck

Department of Mechanical and Industrial Engineering, University of Toronto
{lduan,samuel,jcb}@mie.utoronto.ca

Abstract. To exploit multi-core computing power, this paper presents
parallel cooperative solvers for solving constraint satisfaction and opti-
mization problems. Each solver owns the entire problem and exchanges
partial solutions with other solvers. We applied Solution-Guided Multi-
Point Constructive Search to the quasigroup-with-holes completion prob-
lem and Tabu Search to the quadratic assignment problem. Experimental
results demonstrate that adding more solvers helps to improve the perfor-
mance for both problems. We also introduce communication graphs and
import policies to change solver cooperation. A combination of commu-
nication graph and import policy significantly impacts the performance,
where the benefit from cooperation differs on the two problems: coop-
eration improves performance on the quasigroup-with-holes but not on
the quadratic assignment problem.

1 Introduction

The multi-core architecture brings exciting opportunities for solving combinato-
rial problems. Today, a cluster formed out of several PCs can easily outstrip the
performance of a decade-old supercomputer. Although hard combinatorial prob-
lems are notorious for being computationally prohibitive, larger problems have
been successfully tackled, for example, by a series of fruitful exploitations of par-
allel computing [18, 12, 13, 16, 11]. Aligning with previous work on parallel search
and distributed constraint programming, this paper presents parallel coopera-
tive solvers, in which solutions, or partial solutions, are communicated to provide
heuristic guidance. We experiment with Solution-Guided Multi-Point Construc-
tive Search [2] for quasigroup-with-holes completion problems and with Tabu
Search for quadratic assignment problems. Experimental results demonstrate
that adding more solvers improves performance for both problems, although the
performance gain relies on how solvers collaborate. The speedups and benefits
from cooperation differ significantly on the two problems. The main contribution
of this paper is an initial investigation of using parallel cooperative solvers to
solve hard constraint satisfaction and optimization problems.

The crux of gaining performance with parallel computing lies in exploiting
different aspects of parallelism in a problem. In parallel constructive search [12,
16], parallelism is exploited by solvers (also known as workers) searching different
parts of the same search tree. While each worker explores a different subtree,

all the workers are coordinated by a centralized control to be informed of a new
search node and to avoid duplicating others’ work. Essentially, the search space is
partitioned and searched in parallel, leading to linear, and sometimes superlinear
speedups [13]. In contrast, when the distributed nature of the problem (e.g.
field sensor networks) or privacy concerns [4] make a centralized coordination
impractical, the distributed constraint programming allows solvers (also known
as agents) to divide the variable set and the constraints. When solving a problem,
an individual agent attempts to satisfy internal constraints while communicating
nogoods to resolve inter-agent constraints. Each agent operates asynchronously
and searches in parallel [18, 11], leading to substantial increases in scalability [11,
14].

The cooperative solver approach we proposed is distinguished from the above
as it relaxes the solver inter-dependence. Unlike parallel solvers sharing the same
search tree, or distributed solvers sharing constraints, the cooperative solvers can
be completely independent or fully collaborative. Communication is used to in-
fluence the search, as one solver’s search can be guided by another’s solution.
Our hypothesis is that the best performance requires a good balance between
guidance by an outside solution and searching on one’s own. To this end, we in-
troduce communication graphs and import policies to experiment with different
points on the spectrum of collaboration versus independence. Although com-
municating solutions for guiding heuristic search has become commonplace for
parallel combinatorial optimization [1], to our knowledge, no attempt has been
made to guide constructive search for a constraint satisfaction problem using
parallel cooperative solvers.

In Section 2, we provide a generic description of parallel cooperative solvers.
The first part of the experiments (Section 3) applies Solution-Guided Multi-Point
Constructive Search to the quasigroup-with-holes completion problem, and the
second part (Section 4) presents results for the quadratic assignment problem
using Tabu Search. Discussions and future work appear in Section 5, followed
by conclusions in Section 6.

2 Communication and Solver Cooperation

A solver owns the entire problem, runs a search algorithm, and communicates
solutions with other solvers. In a constraint satisfaction problem, a solution is a
set of consistent variable assignments. We assume that a “better” solution has
more assigned variables, and a complete solution has all the variables assigned
and no constraints violated. In an optimization problem, a solution is always
a complete and consistent assignment. A solver may also have an “elite” set
holding a few high-quality solutions. An elite set enables a solver to keep track
of high-quality solutions, either found by itself or obtained from other solvers.

In this paper, we propose a simple strategy for solver cooperation. We first
describe how solvers exchange solutions according to a communication graph,
then present two policies of treating solutions obtained from other solvers.

We specify that a solver can only communicate directly with its neighbours
and use a communication graph to define a solver’s neighbours. Each node rep-
resents a solver and each edge corresponds to bidirectional traffic of messages.
The level of communication is indicated by the graph density, defined as the
number of edges divided by the total number of edges of the complete graph.
Take the four-solver communication graphs for example. Starting with density
0 (no edges) where no communication takes place and each solver attempts a
problem independently, the next level up is a path connecting all the 4 nodes
with density 0.5 (Figure 1(a)), then one more edge is added at a time, forming
graphs of density 0.67 (Figure 1(b)), 0.83 (Figure 1(c)), and 1 (Figure 1(d)).1

Our objectives are to find out: 1) whether adding more solvers helps to find
a solution more quickly, and 2) how different communication graphs affect the
performance.

(a) 0.5 (b) 0.67 (c) 0.83 (d) 1

Fig. 1. Communication graphs for 4 solvers with different densities.

With communication, a solver periodically receives foreign solutions from its
neighbours and decides how to import them into its elite set. An import policy
selects one foreign solution at a time to replace the worst elite solution, if the se-
lected solution is better than the worst elite. Otherwise, it will be discarded with
all the other foreign solutions. A simple selection method is to always choose the
best solution (referred to as import-best hereafter). In order to diversify search
with different solutions, we introduce “import-softmax” which probabilistically
chooses one foreign solution based on the idea of giving every solution a proba-
bility of being chosen but favouring solutions of better quality [3].

Given a set of N solutions {s1, s2, . . . , sN} with their corresponding counts
of unassigned variables for constraint satisfaction, or objective values for opti-
mization (assuming the smaller the better) {a1, a2, . . . , aN}, the probability of
choosing a solution si is mapped by the Boltzmann’s distribution:

p(si) =
exp(Qt(si)/τ)

∑N

k=1 exp(Qt(sk)/τ)
(1)

1 All the communication graphs for 4, 8 and 12 solvers used in the experiments are
available at http://tidel.mie.utoronto.ca/parallelcoopsolvers.php.

where Qt(si) = ai − minN
k=1{ak}, and τ = −(max{ak} − min{ak}). (If τ = 0,

then p(si) = 1/N .) This mapping assigns a greater probability to a solution with
fewer unassigned variables or a better objective value, ensuring that a better
solution is more likely to be selected by import-softmax. It is easy to verify that∑N

i=1 p(si) = 1.
An import policy has a local impact at each solver, while a communication

graph impacts the global distribution of elite solutions. We call a combination of
an import policy and a communication graph a cooperation configuration. How
a configuration affects the solver performance will be studied in the experiments.

3 Experiment 1: SGMPCS for QWH

Solution-Guided Multi-Point Constructive Search (SGMPCS) has demonstrated
strong performance on both constraint satisfaction problems [7] and optimiza-
tion problems [2]. This notable success is mostly attributed to the combination
of randomized restart and guiding search with elite solutions. The former can
significantly boost the performance of constructive search [5] while the latter is
the most effective mechanism in metaheuristics [17].

Pseudocode for the Solution-Guided Multi-Point Constructive Search is shown
in Algorithm 1 (adapted from [7] for parallel cooperative solvers). The algorithm
initializes a set, e, of elite solutions and then enters a while-loop. In each itera-
tion, a set of foreign solutions received is examined. At most one foreign solution
is inserted into the elite set, following the protocol described in the previous
section. All other foreign solutions are discarded. Then a search is started from
a randomly selected elite solution. If the best solution found, s, is better than
the starting elite solution, s will replace the starting solution and will be sent to
all the neighbours. Otherwise, the best elite solution will be sent.

Each individual search is limited by a certain number of fails. In multiple
solvers, the algorithm will terminate when 1) a solver finds a complete solution,
or 2) a solver proves that the problem has no solutions, or 3) each solver reaches
its own maximum fail limit.

SGMPCS is identically configured according to the parameter settings in [7].

– Initializing elite solution set (|e| = 8) An elite solution is initialized by a
chronological backtracking with smallest-domain for variable ordering fol-
lowed by randomly choosing a value. Eight best solutions are retained out
of 20 independent runs. Each run is restricted by a total of 1000 fails.

– Bounding search Each individual search is bounded by a polynomial fail
limit: it is initialized to 32 and reset to 32 whenever a better solution is
found, and it is increased by 32 when a search fails to improve a solution.
The maximum fail limit is set to 2, 000, 000 at each solver.

– Guidance by elite solutions Apart from initialization, every search is guided
by an elite solution. A search tree is created using smallest-domain for vari-
able ordering. Then a value is assigned as the same as it is in the elite
solution, provided it is still in the domain of the variable. Otherwise, a value
is randomly chosen and assigned.

Algorithm 1: SGMPCS for Parallel Cooperative Solvers

1 initialize elite solution set e

2 while not solved and termination criteria unmet do

import a solution and replace worst(e), if the imported solution 6∈ e and is
better than worst(e)

3 r := randomly chosen element of e

4 set fail bound, b

5 s := search(r, b)
6 if s is better than r then

7 replace r with s

8 send s out to neighbours

else

9 send the best elite solution to neighbours

end

end

An n×n Quasigroup-With-Holes completion problem (QWH) [6] is a matrix
where each row and each column is required to be a permutation of the integers
1, . . . , n. Since some of the matrix elements are left empty (“holes”), they are
required to be filled with consistent values in order to find a complete quasigroup.

The performance evaluation includes the speedup of multiple solvers and
the search cost, as measured by Concurrent Choice Points (CCPs), Aggregate
Messages, and Aggregate CPU Time.

– The concurrent choice points take into account the dependency of search cost
among solvers and are measured by the Cumulative Cost Algorithm [10]. The
basic idea is that when a solver imports a solution, it also inherits the search
cost of that solution. Then the solver will update its own choice point count,
if the choice points of the imported solution are greater. At the end of the
search, the concurrent choice points are taken as the biggest choice points
among all the solvers.

– The aggregate messages measure the communication cost. Each message is
composed of a solution and its choice point count. The aggregate messages
sum up the total number of sent and received messages among all the solvers.

– The aggregate CPU time totals the CPU time of each solver upon termina-
tion. It comprises both time for search and time for communication.

The computing environment consists of 31 computing nodes. Each node has
two 2.0 GHz AMD Dual Core processors with 4 Gb RAM running Red Hat
Enterprise Linux 4. SGMPCS was implemented in ILOG Scheduler 6.0 with
MPICH2 for communication.

Two sets of QWH instances are used. The first set comprises 10 order-33,
387-hole instances generated using the Gomes generator [6].2 Each instance was
attempted 10 times by 1, 4, 8, and 12 solvers, respectively. For a fixed solver

2 It is available at: http://www.cs.cornell.edu/gomes/new-demos.htm

number, an instance was tried for all the configurations (i.e., combinations of
all the communication graphs and the two import policies). This instance set is
also used to study how configurations affect the performance. The second set is
an existing benchmark comprising 18 instances with orders ranging from 30 to
70, which was also used in [6, 15, 7].

1 2 3 4 5 6 7 8 9 10 11 12
1

2

3

4

5

6

7

8

9

10

11

12

Number of Solvers (CPUs)

Sp
ee

du
p

on
 th

e
M

ea
n

Co
nc

ur
re

nt
 C

ho
ice

 P
oi

nt
s

A combination of communication graph and import policy on Order−33, 387−hole QWH instances

no−communication
import−best
import−softmax

Fig. 2. Speedup on the mean concurrent choice points of 4, 8, and 12 solvers.

Figure 2 shows the speedup of using 4, 8, 12 solvers over a single solver
running SGMPCS. The speedup is calculated as the mean choice points for a
single solver divided by the mean concurrent choice points for multiple solvers
with the best configuration. If a run fails to find a solution, the (concurrent)
choice points are still used to calculate the mean. Figure 2 plots three curves:
one without communication, one for communication based on the import-best
policy, the other for communication with import-softmax. The figure clearly
shows that adding more solvers helps to discover a solution more quickly, and
cooperating solvers outperform their non-communicating counterparts. However,
two important notes should be taken. First, the speedup is obtained by the best
combination of communication graph and import policy. Therefore simply adding
more solvers with an arbitrary configuration will not guarantee a speedup. In
fact, there are quite a few cases in which communication hurts the performance,
as shown below. Second, as can be seen from the dashed line in Figure 2, all the
speedups are sublinear. For instance, the 12 solvers only achieved slightly more
than a 6 times speedup. This is not surprising since solvers do not divide up the
search space. Quite to the contrary, they may overlap a significant portion of
the search space when intensifying search around a few elite solutions.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

4.2

4.4
x 105

communication graph density

M
ea

n
Co

nc
ur

re
nt

 C
ho

ice
 P

oi
nt

s

Order−33, 387−hole QWH instances

4−Solver−import−best
4−Solver−import−softmax

Fig. 3. Comparing the mean concurrent choice points across different communication
graphs combined with import-best and import-softmax polices for 4 solvers.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1.6

1.8

2

2.2

2.4

2.6

2.8

3
x 105

communication graph density

M
ea

n
Co

nc
ur

re
nt

 C
ho

ice
 P

oi
nt

s

Order−33, 387−hole QWH instances

8−Solver−import−best
8−Solver−import−softmax

Fig. 4. Comparing the mean concurrent choice points across different communication
graphs combined with import-best and import-softmax polices for 8 solvers.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3
x 105

communication graph density

M
ea

n
Co

nc
ur

re
nt

 C
ho

ice
 P

oi
nt

s

Order−33, 387−hole QWH instances

12−Solver−import−best
12−Solver−import−softmax

Fig. 5. Comparing the mean concurrent choice points across different communication
graphs combined with import-best and import-softmax polices for 12 solvers.

Figures 3, 4, and 5 show the mean concurrent choice points over 10 runs across
different communication graphs for 4, 8, and 12 solvers, respectively. Each figure
demonstrates the impact of the two import policies. The communication graph,
coupled with an import policy, significantly alters the performance. Contrary to
the intuition that the curves would demonstrate a somewhat monotonic pattern,
the concurrent choice points oscillate across communication graph densities as
well as with import policies. Given a fixed number of solvers, the best result
always occurs with communication, rather than without communication. For
4 solvers, the best CCP is obtained by the communication graph of 4 edges
(density 0.67) with import-best. For 8 solvers, the best CCP is obtained by the
graph of 7 edges (density 0.25) with import-softmax. For 12 solvers, the best
CCP is obtained by the graph of 30 edges (density 0.45) with import-softmax.
Interestingly, the best CCPs seem to be obtained by communication graphs with
low or medium density.

Figure 6 shows the mean aggregate messages for 4, 8, and 12 solvers, respec-
tively. The message volumes demonstrate roughly linear increases when more
edges are added. Fewer messages result from lower graph densities as well as
fewer concurrent choice points (i.e. finding a solution more quickly). Due to the
space limit, Figure 7 shows the mean aggregate CPU time for 12 solvers only.
Nevertheless, all the curves are in accordance with those in the CCP figures,
showing that the CPU time is mainly consumed by searching for a solution
instead of by communication.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5
x 104

communication graph density

M
ea

n
Ag

gr
eg

at
e

M
es

sa
ge

s
(S

en
t +

 R
ec

ei
ve

d)

4, 8, 12 SGMPCS solvers on Order−33, 387−hole QWH instances

4−CPU−best
4−CPU−softmax
8−CPU−best
8−CPU−softmax
12−CPU−best
12−CPU−softmax

Fig. 6. Mean aggregate messages across different communication graphs combined with
import-best and import-softmax polices for 4, 8, and 12 solvers.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
300

400

500

600

700

800

900

1000

1100

1200

communication graph density

M
ea

n
Ag

gr
eg

at
e

CP
U

Ti
m

e
(1

2−
CP

U)
 in

 s
ec

on
ds

Order−33, 387−hole QWH instances

12−Solver−import−best
12−Solver−import−softmax

Fig. 7. Mean aggregate CPU time across different communication graphs combined
with import-best and import-softmax polices for 12 solvers.

Table 1. Unsolved instances (out of 100) of order-33, hole-387 QWH problems

Number of Solvers No Communication Import-best Import-softmax

1 19 - -
4 5 3 3
8 1 1 1
12 1 0 0

Table 1 presents the number of unsolved instances based on the best configu-
ration given a fixed number of solvers. For a single solver, the number of unsolved
instances is 19 out of 100. Adding more cooperative solvers gradually reduces
the number of unsolved instances. Finally, with 12 cooperating solvers, all the
instances were solved in all the runs. Note that even though a run fails to find
a solution, the (concurrent) choice points are still used to calculate the mean.
Given the large number of unsolved instances for a single solver, the speedups
shown in Figure 2 are an under-estimate.

Table 2. Comparing the mean (concurrent) choice points on QWH benchmark in-
stances for 1, 4, 8, and 12 solvers with their best configurations. The bold entry indi-
cates the best result on an instance. The unsolved is the number unsolved out of 10
runs.

1 solver 4 solvers 8 solvers 12 solvers
order holes unsolved CPs unsolved CCPs unsolved CCPs unsolved CCPs

30 316 0 358 0 203 0 117 0 62

30 320 0 310 0 101 0 50 0 35

33 381 10 2025235 5 1905982 2 1474190 2 888470

35 405 0 192720 0 58637 0 50007 0 32753

40 528 6 1738612 0 155179 0 234865 0 165993
40 544 2 739356 0 152132 0 123276 0 120126

40 560 0 161053 0 64229 0 67287 0 59260

50 2000 0 1737 0 1716 0 1716 0 1712

50 825 10 2171697 10 2820974 9 3299496 9 3652465
60 1440 0 154308 0 96864 0 87643 0 68414

60 1620 0 199879 0 92284 0 78939 0 74317

60 1692 0 84941 0 59477 0 43205 0 43801
60 1728 0 76625 0 45740 0 44198 0 43656

60 1764 0 47068 0 41745 0 44491 0 44527
60 1800 0 50487 0 42949 0 45719 0 45707
70 2450 0 246042 0 117868 0 94622 0 77291

70 2940 0 36737 0 27286 0 49076 0 40918
70 3430 0 7581 0 3026 0 2990 0 2967

The last part of the QWH experiments compares the mean concurrent choice
points for 1, 4, 8, and 12 solvers with their best configurations on a set of
benchmark instances in Table 2. Each instance was attempted 10 times. Clearly,
adding more solvers helps to solve more instances. For example, the two order-
40 instances (528-hole and 544-hole) were solved in all the runs. With 8 and 12
solvers, the number of unsolved instances for the order-33-381-hole instance was
brought to 2, down from 10 for a single solver. Also, parallel cooperative solvers
significantly reduced the mean concurrent choice points, for example, more than
11 times fewer on the order-40-528-hole instance compared to a single solver.

4 Experiment 2: Tabu Search for QAP

In this section, we apply parallel cooperative solvers with tabu search to the
Quadratic Assignment Problem (QAP). The main objective is to examine whether
results from the constraint satisfaction problem case apply to an optimization
problem as well.

A quadratic assignment problem [8] is mathematically formulated as follows.
Given two matrices A = (aij)n×n and B = (bkl)n×n, and let the set Π be
permutations of the integers from 1 to n. The goal is to find a permutation
π = (π(1), π(2), . . . , π(n)) ∈ Π such that

min
π∈Π

f(π) =
n∑

i=1

n∑

j=1

aijbπ(i)π(j) (2)

A is often interpreted as the flow matrix while B represents the distance matrix.
An optimal solution minimizes the total flow cost between facilities. Large QAP
instances are often tackled by heuristic methods such as Tabu Search. A review
of recent advances for solving QAP appears in [9].

Tabu search tries to escape local optima by forbidding some recent moves
recorded in a tabu list. In our implementation, an iteration of tabu search starts
by evaluating all the 2-opt moves in the current neighbourhood. A 2-opt move
selects two different elements and exchanges their positions in the permutation
representing a solution. Tabu search selects a move in the following order: 1) if
the best move in the tabu list leads to a better solution than the current best
solution, the search will accept this move. 2) if the best tabu move does not
improve the current best solution, then the search will choose the best non-tabu
move. 3) if every move in the neighbourhood is in the tabu list, the search will
choose the best tabu move, if it improves the present solution, or the move that
has been kept in the tabu list for the longest time. Ties are broken randomly
when choosing a move.

Each tabu search run by a solver is configured as follows.

– tabu list size A solver fixes its tabu list length by randomly choosing it from
the set of {5, 7, 9, 11, 15, 17}.

– one elite solution A solver keeps track of the best solution found so far, either
found by itself or imported from its neighbours.

– Bounding search Each individual tabu search is bounded by 500 iterations
after no improvement. The maximum number of iterations is 10000.

– Proportion of searching guided by elite solutions After 500 iterations with-
out improvement, a solver restarts search either from a randomly generated
solution, or from the elite solution. The probability of restarting from the
elite solution is set to 0.5.

– communication A solver sends the best solution to its neighbours every 50
iterations and imports a solution at the end of each individual search. The
imported solution will replace the current elite solution, if it is better.

Tabu search is implemented in C++ with MPICH2 for communication. The
same computing environment as for the QWH experiments was used. The QAP
instances are a set of recently released problems based on microarray layout.3

Each instance was attempted 5 times with the same communication graphs as
SGMPCS for QWH, combined with the import-softmax policy.

 2

 4

 6

 8

 10

 12

 2 4 6 8 10 12

Sp
ee

du
p

of
 M

ea
n

Co
nc

ur
re

nt
 It

er
at

io
ns

Number of Solvers (CPUs)

Instance 06x06 ci

no-communication
import-softmax

Fig. 8. Speedup on the mean concurrent iterations of 4, 8, and 12 solvers.

The speedup on the mean concurrent iterations is calculated as follows. 1)
The best solution ever found is identified and a very close range within the best
objective value, e.g. 0.1%, is targeted. 2) For each run, the iteration at which the
objective value first reaches the target range is recorded. If a run fails to reach
the range, the maximum iteration (10000) is used instead. 3) the iterations from
2) for a single solver are averaged over all the runs, then divided by the corre-
sponding mean iterations for multiple solvers. Figure 8 shows the speedup for
the 0.1% target range within the best overall solution on the chip size 6 × 6

3 Details at http://gi.cebitec.uni-bielefeld.de/comet/chiplayout/qap/index.html

conflict index instance. Other instances show similar speedup results. Similar
to the QWH case (Figure 2), adding more solvers helps to reach a high-quality
solution more quickly, and communication with the best configuration outper-
forms non-communication. However, the speedup develops more slowly: the 12
solvers achieved a mere 2.7 speedup with the best cooperation configuration and
non-communication only 2.1.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 0.2 0.4 0.6 0.8 1

M
ea

n
Co

nc
ur

re
nt

 It
er

at
io

ns

Communication Graph Density

Instance 06x06 ci

0.00% 12-Solver-import-softmax
0.10% 12-Solver-import-softmax
0.25% 12-Solver-import-softmax

Fig. 9. Comparing the mean concurrent iterations across different communication
graphs for 12 solvers. The best solution found has an objective value of 168611971.
The target ranges are 0%, 0.1%, and 0.25% away from this objective value.

Figure 9 presents the mean concurrent iterations for 0%, 0.1%, and 0.25%
target ranges across different communication graphs for 12 solvers. The difference
from the QWH results becomes more pronounced. While cooperation clearly
boosts solver performance on QWH, the high-quality QAP solutions, marked
by the small target ranges, predominantly fall into non-communicating solvers,
except in two cases at the 42-edge communication graph (density 0.64) for the
0% and 0.10% target ranges. Nevertheless, the cooperative solvers outperform
several best known solutions on this QAP instance set, as shown in Table 3.

5 Discussion and Future Work

Similar to constructive search, the work-stealing in parallel constructive search [12,
16] carefully coordinates different workers to guarantee no repeated search. But
this restriction hampers search from freely following heuristics. In contrast, co-
operative solvers, resembling local search, are free to follow heuristics but may
overlap on search space explorations. This paper raises an analogous question:

Table 3. Comparing objective values on the microarray-layout border length mini-
mization (bl) and conflict index minimization (ci) QAP instances using 12 cooperative
solvers with the best configuration to the best known results. The relative error is cal-
culated as Obj−ObjB

ObjB

× 100% where Obj is the objective value obtained by the solvers
and ObjB is the best known. A bold entry indicates a new best solution. The wall time
is the duration between the start of executing the solvers and the end at which all the
solvers terminate.

Instance Best Known Cooperative Solvers Relative Error (%) wall time (sec.)

6 × 6 bl 3, 296 3, 296 0.00 299.9
7 × 7 bl 4, 564 4,560 −0.09 933.5
8 × 8 bl 6, 048 6,040 −0.13 1782.3
9 × 9 bl 7, 644 7, 648 +0.05 4307.2

10 × 10 bl 9, 432 9, 452 +0.21 7693.7
11 × 11 bl 11, 640 11, 676 +0.31 10907.6
12 × 12 bl 13, 832 13, 848 +0.12 25743.6

6 × 6 ci 169, 016, 907 168,611,971 −0.24 305.1
7 × 7 ci 237, 077, 377 236,613,631 −0.20 1054.1
8 × 8 ci 326, 696, 412 326,376,790 −0.10 1787.2
9 × 9 ci 428, 682, 120 430, 224, 089 +0.36 3217.6

10 × 10 ci 525, 401, 670 528, 471, 212 +0.58 7118.2
11 × 11 ci 658, 317, 466 662, 898, 977 +0.70 14854.3
12 × 12 ci 803, 379, 686 809, 244, 786 +0.73 24683.1

Work-stealing is systematic but restrictive, while cooperative solvers are free to
explore search space but may duplicate search. For very large problems, is it
rewarding to give up the systematicity of work-stealing in exchange for better
performance using cooperative solvers in parallel search? We aim to answer this
question by a direct comparison between work-stealing and cooperative search
on large combinatorial problems in the future.

Another area for future work is to enable a solver to dynamically change
its neighbours and to adjust its import policy, thus overcoming the hurdle of
having to experiment with a large number of combinations. For example, several
solvers can start with a fully connected communication graph and end up with
an empty one, should independent solving turn out to be more desirable for a
particular problem. Also, solvers can adapt themselves when more solvers join or
some solvers leave. This would require a solver to autonomously evaluate the rel-
evance of an imported solution and even a neighbour using a more sophisticated
criterion, and to become more proactive in procuring heuristic guidance.

6 Conclusion

In this paper, we presented parallel cooperative solvers in which each solver
communicates solutions. Experimental results demonstrated that adding more
solvers helps to improve the performance for quasigroup-with-holes completion
problems with SGMPCS and for quadratic assignment problems with Tabu

Search. We also introduced communication graphs and import policies to change
the way in which solvers cooperate. Experimental results showed that solvers
benefit from the heuristic guidance through collaboration on the quasigroup-
with-holes completion problem, but not as much on the quadratic assignment
problem. We observed that a cooperation configuration has a significant impact
on search performance. Therefore further investigations are needed to under-
stand how communication affects the performance.

References

1. E. Alba, editor. Parallel Metaheuristics: A New Class of Algorithms. Wiley, 2005.
2. J. C. Beck. Solution-Guided Multi-Point Constructive Search for Job Shop Schedul-

ing. Journal of Artificial Intelligence Research, 29:49–77, 2007.
3. J. L. Bresina. Heuristic-biased stochastic sampling. In AAAI, pages 271–278, 1996.
4. B. Faltings. Handbook of Constraint Programming, chapter 20, Distributed Con-

straint Programming, pages 699–729. Elsevier, 2006.
5. C. P. Gomes, B. Selman, and H. Kautz. Boosting combinatorial search through

randomization. In AAAI, 1998.
6. C. P. Gomes and D. Shmoys. Completing quasigroups or latin squares: A structured

graph coloring problem. In Proceedings of Computational Symposium on Graph
Coloring and Generalizations, 2002.

7. I. Heckman and J. C. Beck. An empirical study of multi-point constructive search
for constraint satisfaction. In Proceedings of the Third International Workshop on
Local Search Techniques in Constraint Satisfaction, 2006.

8. T. Koopmans and M. Beckmann. Assignment problems and the location of eco-
nomic activities. Econometrica, 25:53–76, 1957.

9. E. M. Loiola, N. M. M. de Abreu, P. O. Boaventura-Netto, P. Hahn, and
T. Querido. A survey for the quadratic assignment problem. European Journal of
Operational Research, 176:657–690, 2007.

10. A. Meisels, E. Kaplansky, I. Razgon, and R. Zivan. Comparing performance of
distributed constraints processing algorithms. In Proceedings of 3rd Workshop on
Distributed Constraint Reasoning (AAMAS 2002), 2002.

11. P. J. Modi, W.-M. Shen, M. Tambe, and M. Yokoo. ADOPT: Asynchronous dis-
tributed constraint optimization with quality guarantees. Artificial Intelligence,
161:149–180, 2005.

12. L. Perron. Search procedures and parallelism in constraint programming. In CP,
1999.

13. L. Perron. Practical parallelism in constraint programming. In CPAIOR, 2002.
14. A. Petcu and B. Faltings. A scalable method for multiagent constraint optimiza-

tion. In IJCAI, 2005.
15. P. Refalo. Impact-based search strategies for constraint programming. In CP,

2004.
16. C. Schulte. Programming Constraint Services : High-Level Programming of Stan-

dard and New Constraint Services. Springer, 2002.
17. J.-P. Watson, A. E. Howe, and L. D. Whitley. Deconstructing Nowicki and Smut-

nicki’s i-TSAB tabu search algorithm for the job-shop scheduling problem. Com-
puters and Operations Research, 33(9):2623–2644, 2006.

18. M. Yokoo, E. H. Durfee, T. Ishida, and K. Kuwabara. The Distributed Con-
straint Satisfaction Problem: Formalization and Algorithms. IEEE Transactions
on Knowledge and Data Engineering, 10(5):673–685, 1998.

